ضریب همبستگی - کالج نوین

ضریب همبستگی

ضریب همبستگی : عددی بین ۱- و ۱ است که قدرت و جهت رابطه بین متغیرها را به شما می گوید. به عبارت دیگر، نشان می دهد که اندازه گیری دو یا چند متغیر در یک مجموعه داده چقدر شبیه است.

ضریب همبستگی1 : همبستگی مثبت کامل
هنگامی که یک متغیر تغییر می کند، متغیرهای دیگر در همان جهت تغییر می کنند.

ضریب همبستگی0 : همبستگی صفر هیچ رابطه ای بین متغیرها وجود ندارد.
ضریب همبستگی -1 : همبستگی منفی کامل

هنگامی که یک متغیر تغییر می کند، متغیرهای دیگر در جهت مخالف تغییر می کنند.

یک ضریب همبستگی به شما چه می گوید؟

ضرایب همبستگی داده ها را خلاصه می کند و به شما کمک می کند نتایج را بین مطالعات مقایسه کنید.

جمع بندی داده ها

ضریب همبستگی یک آمار توصیفی است. این بدان معنی است که داده های نمونه را بدون اینکه به شما اجازه دهد چیزی در مورد جامعه استنباط کنید، خلاصه می شود.

ضریب همبستگی زمانی که رابطه بین دو متغیر را خلاصه می کند یک آمار دو متغیره است و زمانی که بیش از دو متغیر دارید یک آماره چند متغیره است.

اگر ضریب همبستگی شما بر اساس داده های نمونه باشد، اگر می خواهید نتایج خود را به جامعه تعمیم دهید، به یک آمار استنباطی نیاز خواهید داشت. برای محاسبه آمار آزمونی که اهمیت آماری یافته شما را به شما می گوید، می توانید از آزمون F یا آزمون t استفاده کنید.

ضریب همبستگی
ضریب همبستگی – کالج نوین

مقایسه مطالعات

ضریب همبستگی نیز یک اندازه گیری اندازه اثر است که اهمیت عملی یک نتیجه را به شما می گوید. ضرایب  بدون واحد هستند که امکان مقایسه مستقیم ضرایب بین مطالعات را فراهم می کند.

با استفاده از ضریب همبستگی

در تحقیقات همبستگی، شما بررسی می کنید که آیا تغییرات در یک متغیر با تغییرات در متغیرهای دیگر مرتبط است یا خیر.

مثال : شما بررسی می کنید که آیا نمرات استاندارد شده از دبیرستان با نمرات تحصیلی در کالج مرتبط است یا خیر. شما پیش‌بینی می‌کنید که یک همبستگی مثبت وجود دارد: نمرات SAT بالاتر با معدل بالاتر دانشگاه مرتبط است در حالی که نمرات SAT پایین با معدل پایین‌تر دانشگاه مرتبط است.
پس از جمع‌آوری داده‌ها، می‌توانید با ترسیم یک متغیر در محور x و دیگری در محور y، داده‌های خود را با یک نمودار پراکنده تجسم کنید. فرقی نمی کند که کدام متغیر را روی هر دو محور قرار دهید.

نمودار خود را به صورت بصری برای یک الگو بررسی کنید و تصمیم بگیرید که آیا یک الگوی خطی یا غیر خطی بین متغیرها وجود دارد. یک الگوی خطی به این معنی است که شما می توانید یک خط مستقیم با بهترین تناسب بین نقاط داده قرار دهید، در حالی که یک الگوی غیر خطی یا منحنی می تواند انواع اشکال مختلف مانند U-شکل یا یک خط با منحنی را داشته باشد.

این مقاله را مطالعه کنید  انواع متغیرها ، 3 نوع آن

ضرایب زیادی وجود دارد که می توانید آنها را محاسبه کنید. پس از حذف هر گونه نقاط پرت، ضریب همبستگی مناسب را بر اساس شکل کلی الگوی نمودار پراکندگی انتخاب کنید.

سپس می توانید یک تحلیل همبستگی برای یافتن ضریب  برای داده های خود انجام دهید. شما یک ضریب را برای خلاصه کردن رابطه بین متغیرها بدون نتیجه گیری در مورد علیت محاسبه می کنید.

تفسیر ضریب همبستگی

مقدار ضریب همبستگی همیشه بین 1 و -1 است و شما آن را به عنوان یک شاخص کلی از قدرت رابطه بین متغیرها در نظر می گیرید. علامت ضریب نشان می دهد که آیا متغیرها در جهت یکسان یا مخالف تغییر می کنند: مقدار مثبت به معنای تغییر متغیرها با هم در یک جهت است، در حالی که مقدار منفی به این معنی است که آنها با هم در جهت مخالف تغییر می کنند.

قدر مطلق یک عدد برابر است با عدد بدون علامت آن قدر مطلق یک ضریب همبستگی، بزرگی همبستگی را به شما می گوید: هر چه قدر مطلق بیشتر باشد، همبستگی قوی تر است.

دستورالعمل های مختلفی برای تفسیر ضریب همبستگی وجود دارد، زیرا یافته ها می توانند بین رشته های مورد مطالعه بسیار متفاوت باشند. می توانید از جدول زیر به عنوان یک دستورالعمل کلی برای تفسیر قدرت همبستگی از مقدار ضریب همبستگی استفاده کنید.

در حالی که این دستورالعمل به طور کلی مفید است، بسیار مهمتر است که زمینه و هدف تحقیق خود را هنگام نتیجه گیری در نظر بگیرید. برای مثال، اگر اکثر مطالعات در رشته شما دارای ضرایب همبستگی نزدیک به 0.9 هستند، ممکن است ضریب همبستگی 0.58 در آن زمینه پایین باشد.

ضریب همبستگی
ضریب همبستگی – کالج نوین

تجسم همبستگی های خطی

ضریب همبستگی به شما می گوید که داده های شما چقدر نزدیک به یک خط قرار می گیرند. اگر یک رابطه خطی دارید، یک خط مستقیم از بهترین تناسب ترسیم خواهید کرد که تمام نقاط داده شما را در نمودار پراکنده در نظر می گیرد.

هرچه نقاط شما به این خط نزدیکتر باشد، ضریب همبستگی قدر مطلق بالاتر و همبستگی خطی شما قوی تر می شود. اگر همه نقاط کاملاً روی این خط باشند، شما یک همبستگی کامل دارید.

توجه داشته باشید که شیب یا شیب خط با مقدار ضریب ارتباطی ندارد. ضریب همبستگی به شما کمک نمی‌کند پیش‌بینی کنید که یک متغیر بر اساس یک تغییر معین در دیگری چقدر تغییر می‌کند، زیرا دو مجموعه داده با مقدار ضریب همبستگی یکسان می‌توانند خطوطی با شیب‌های بسیار متفاوت داشته باشند.

انواع ضرایب همبستگی

شما می توانید از میان ضرایب همبستگی مختلف بر اساس خطی بودن رابطه، سطح اندازه گیری متغیرهای خود و توزیع داده های خود انتخاب کنید.

برای قدرت و دقت آماری بالا، بهتر است از ضریب همبستگی که برای داده‌های شما مناسب‌تر است استفاده کنید. متداول ترین ضریب همبستگی ضریب پیرسون r است زیرا امکان استنتاج قوی را فراهم می کند. پارامتری است و روابط خطی را اندازه گیری می کند. اما اگر داده‌های شما تمام فرضیات این تست را برآورده نمی‌کند، باید به جای آن از یک تست ناپارامتریک استفاده کنید.

این مقاله را مطالعه کنید  تحقیق همبستگی چیست ، 3 نوع آن

آزمون های ناپارامتریک ضرایب همبستگی رتبه ای، روابط غیرخطی بین متغیرها را خلاصه می کند. تاو اسپیرمن و تاو کندال شرایط یکسانی برای استفاده دارند، اما تاو کندال به طور کلی برای نمونه‌های کوچک‌تر ترجیح داده می‌شود، در حالی که rho اسپیرمن بیشتر مورد استفاده قرار می‌گیرد.

آر پیرسون

ضریب همبستگی لحظه-محصول پیرسون، همچنین به عنوان r پیرسون شناخته می شود، رابطه خطی بین دو متغیر کمی را توصیف می کند. اگر می‌خواهید از r پیرسون استفاده کنید، اینها مفروضاتی هستند که داده‌های شما باید رعایت کنند:

هر دو متغیر در یک سطح فاصله یا نسبت اندازه گیری هستند
داده های هر دو متغیر از توزیع های نرمال پیروی می کنند
داده های شما هیچ نقطه پرت ندارد
داده های شما از یک نمونه تصادفی یا نماینده است
شما انتظار یک رابطه خطی بین دو متغیر را دارید
پیرسون r یک تست پارامتریک است، بنابراین قدرت بالایی دارد. اما اگر متغیرهای شما یک رابطه غیرخطی داشته باشند، یا اگر داده‌های شما دارای نقاط پرت، توزیع‌های اریب یا از متغیرهای طبقه‌بندی شده باشند، معیار خوبی برای همبستگی نیست.

اگر هر یک از این مفروضات نقض شد، باید یک معیار همبستگی رتبه ای را در نظر بگیرید. فرمول پیرسون r پیچیده است، اما اکثر برنامه های کامپیوتری می توانند به سرعت ضریب همبستگی را از داده های شما بدست آورند. در شکل ساده تر، فرمول کوواریانس بین متغیرها را بر حاصل ضرب انحراف معیار آنها تقسیم می کند.

"<yoastmark

نمونه پیرسون در مقابل فرمول ضریب همبستگی جمعیت

هنگام استفاده از فرمول ضریب همبستگی پیرسون، باید در نظر بگیرید که آیا با داده های یک نمونه سروکار دارید یا کل جامعه. فرمول های نمونه و جمعیت در نمادها و ورودی هایشان متفاوت است. یک ضریب همبستگی نمونه r، در حالی که ضریب همبستگی جمعیتی rho، حرف یونانی ρ نامیده می شود. ضریب همبستگی نمونه از کوواریانس نمونه بین متغیرها و انحراف معیار نمونه آنها استفاده می کند.

ضریب همبستگی جمعیت از کوواریانس جامعه بین متغیرها و انحراف معیار جمعیت آنها استفاده می کند.

اسپیرمن رو

rho اسپیرمن یا ضریب همبستگی رتبه اسپیرمن رایج‌ترین جایگزین برای r پیرسون است. این یک ضریب همبستگی رتبه ای است زیرا از رتبه بندی داده ها از هر متغیر (به عنوان مثال از پایین ترین به بالاترین) به جای خود داده خام استفاده می کند.

زمانی که داده های شما با مفروضات پیرسون r مطابقت ندارند، باید از rho اسپیرمن استفاده کنید. این زمانی اتفاق می افتد که حداقل یکی از متغیرهای شما در سطح ترتیبی اندازه گیری باشد یا زمانی که داده های یک یا هر دو متغیر از توزیع های نرمال پیروی نمی کنند.

در حالی که پیرسون خطی بودن روابط را اندازه گیری می کند، ضریب  اسپیرمن یکنواختی روابط را اندازه گیری می کند. در یک رابطه خطی، هر متغیر در یک جهت با سرعت یکسان در سراسر محدوده داده تغییر می کند. در یک رابطه یکنواخت، هر متغیر نیز همیشه فقط در یک جهت تغییر می‌کند، اما نه لزوماً با همان سرعت.

این مقاله را مطالعه کنید  انجام مقاله مدیریت آموزشی

یکنواخت مثبت: وقتی یک متغیر افزایش می یابد، متغیر دیگر نیز افزایش می یابد.
یکنواخت منفی: وقتی یک متغیر افزایش می یابد، متغیر دیگر کاهش می یابد.
روابط یکنواخت نسبت به روابط خطی محدودیت کمتری دارند.

فرمول ضریب همبستگی رتبه اسپیرمن

نمادهای اسپیرمن rho برای ضریب جمعیت ρ و برای ضریب نمونه rs هستند. فرمول ضریب همبستگی پیرسون را بین رتبه بندی داده های متغیر محاسبه می کند.

برای استفاده از این فرمول، ابتدا داده های هر متغیر را به طور جداگانه از کم به زیاد رتبه بندی می کنید: هر نقطه داده رتبه ای از اول، دوم یا سوم و غیره می گیرد.

سپس، تفاوت های (di) بین رتبه های متغیرهای خود را برای هر جفت داده پیدا خواهید کرد و آن را به عنوان ورودی اصلی فرمول در نظر می گیرید.

اگر ضریب  1 داشته باشید، همه رتبه‌بندی‌ها برای هر متغیر برای هر جفت داده مطابقت دارند. اگر ضریب  1- داشته باشید، رتبه بندی یک متغیر دقیقا برعکس رتبه بندی متغیر دیگر است. ضریب همبستگی نزدیک به صفر به این معنی است که هیچ رابطه یکنواختی بین رتبه بندی متغیرها وجود ندارد.

سایر ضرایب

ضریب همبستگی مربوط به دو ضریب دیگر است و اینها اطلاعات بیشتری در مورد رابطه بین متغیرها به شما می دهند.

ضریب تعیین

وقتی ضریب همبستگی را مجذور می کنید، در نهایت به همبستگی تعیین (r2) می رسید. این نسبت واریانس مشترک بین متغیرها است. ضریب تعیین همیشه بین 0 و 1 است و اغلب به صورت درصد بیان می شود.

از ضریب تعیین در مدل های رگرسیونی برای اندازه گیری اینکه چقدر از واریانس یک متغیر با واریانس متغیر دیگر توضیح داده می شود استفاده می شود. تجزیه و تحلیل رگرسیون به شما کمک می کند تا معادله خط بهترین تناسب را پیدا کنید و می توانید از آن برای پیش بینی مقدار یک متغیر با توجه به مقدار متغیر دیگر استفاده کنید.

r2 بالا به این معنی است که مقدار زیادی از تغییرپذیری در یک متغیر توسط رابطه آن با متغیر دیگر تعیین می شود. r2 پایین به این معنی است که تنها بخش کوچکی از تغییرپذیری یک متغیر با رابطه آن با متغیر دیگر توضیح داده می شود.

روابط با سایر متغیرها به احتمال زیاد واریانس متغیر را محاسبه می کند. ضریب  اغلب می تواند رابطه بین متغیرها را به ویژه در نمونه های کوچک بیش از حد تخمین بزند، بنابراین ضریب تعیین اغلب نشانگر بهتری از رابطه است.

ضریب بیگانگی

وقتی ضریب تعیین را از وحدت (یک) بردارید، ضریب بیگانگی را خواهید گرفت. این نسبت واریانس مشترک بین متغیرها مشترک نیست، واریانس غیرقابل توضیح بین متغیرها. ضریب بیگانگی بالا نشان می دهد که این دو متغیر واریانس بسیار کمی دارند. ضریب بیگانگی پایین به این معنی است که مقدار زیادی از واریانس توسط رابطه بین متغیرها محاسبه می شود.

دیدگاه‌ خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد.

2 × 1 =

شروع گفتگو
نیاز به کمک دارید؟
سلام
چطور می تونم کمکتون کنم؟